File manager - Edit - /home/autoph/public_html/projects/Rating-AutoHub/public/css/brick.zip
Back
PK 3��Z��E+� � math/composer.jsonnu �[��� { "name": "brick/math", "description": "Arbitrary-precision arithmetic library", "type": "library", "keywords": [ "Brick", "Math", "Arbitrary-precision", "Arithmetic", "BigInteger", "BigDecimal", "BigRational", "Bignum" ], "license": "MIT", "require": { "php": "^8.0" }, "require-dev": { "phpunit/phpunit": "^9.0", "php-coveralls/php-coveralls": "^2.2", "vimeo/psalm": "5.0.0" }, "autoload": { "psr-4": { "Brick\\Math\\": "src/" } }, "autoload-dev": { "psr-4": { "Brick\\Math\\Tests\\": "tests/" } } } PK 3��Z�Ve�WF WF math/CHANGELOG.mdnu �[��� # Changelog All notable changes to this project will be documented in this file. ## [0.11.0](https://github.com/brick/math/releases/tag/0.11.0) - 2023-01-16 💥 **Breaking changes** - Minimum PHP version is now 8.0 - Methods accepting a union of types are now strongly typed<sup>*</sup> - `MathException` now extends `Exception` instead of `RuntimeException` <sup>* You may now run into type errors if you were passing `Stringable` objects to `of()` or any of the methods internally calling `of()`, with `strict_types` enabled. You can fix this by casting `Stringable` objects to `string` first.</sup> ## [0.10.2](https://github.com/brick/math/releases/tag/0.10.2) - 2022-08-11 👌 **Improvements** - `BigRational::toFloat()` now simplifies the fraction before performing division (#73) thanks to @olsavmic ## [0.10.1](https://github.com/brick/math/releases/tag/0.10.1) - 2022-08-02 ✨ **New features** - `BigInteger::gcdMultiple()` returns the GCD of multiple `BigInteger` numbers ## [0.10.0](https://github.com/brick/math/releases/tag/0.10.0) - 2022-06-18 💥 **Breaking changes** - Minimum PHP version is now 7.4 ## [0.9.3](https://github.com/brick/math/releases/tag/0.9.3) - 2021-08-15 🚀 **Compatibility with PHP 8.1** - Support for custom object serialization; this removes a warning on PHP 8.1 due to the `Serializable` interface being deprecated (#60) thanks @TRowbotham ## [0.9.2](https://github.com/brick/math/releases/tag/0.9.2) - 2021-01-20 🐛 **Bug fix** - Incorrect results could be returned when using the BCMath calculator, with a default scale set with `bcscale()`, on PHP >= 7.2 (#55). ## [0.9.1](https://github.com/brick/math/releases/tag/0.9.1) - 2020-08-19 ✨ **New features** - `BigInteger::not()` returns the bitwise `NOT` value 🐛 **Bug fixes** - `BigInteger::toBytes()` could return an incorrect binary representation for some numbers - The bitwise operations `and()`, `or()`, `xor()` on `BigInteger` could return an incorrect result when the GMP extension is not available ## [0.9.0](https://github.com/brick/math/releases/tag/0.9.0) - 2020-08-18 👌 **Improvements** - `BigNumber::of()` now accepts `.123` and `123.` formats, both of which return a `BigDecimal` 💥 **Breaking changes** - Deprecated method `BigInteger::powerMod()` has been removed - use `modPow()` instead - Deprecated method `BigInteger::parse()` has been removed - use `fromBase()` instead ## [0.8.17](https://github.com/brick/math/releases/tag/0.8.17) - 2020-08-19 🐛 **Bug fix** - `BigInteger::toBytes()` could return an incorrect binary representation for some numbers - The bitwise operations `and()`, `or()`, `xor()` on `BigInteger` could return an incorrect result when the GMP extension is not available ## [0.8.16](https://github.com/brick/math/releases/tag/0.8.16) - 2020-08-18 🚑 **Critical fix** - This version reintroduces the deprecated `BigInteger::parse()` method, that has been removed by mistake in version `0.8.9` and should have lasted for the whole `0.8` release cycle. ✨ **New features** - `BigInteger::modInverse()` calculates a modular multiplicative inverse - `BigInteger::fromBytes()` creates a `BigInteger` from a byte string - `BigInteger::toBytes()` converts a `BigInteger` to a byte string - `BigInteger::randomBits()` creates a pseudo-random `BigInteger` of a given bit length - `BigInteger::randomRange()` creates a pseudo-random `BigInteger` between two bounds 💩 **Deprecations** - `BigInteger::powerMod()` is now deprecated in favour of `modPow()` ## [0.8.15](https://github.com/brick/math/releases/tag/0.8.15) - 2020-04-15 🐛 **Fixes** - added missing `ext-json` requirement, due to `BigNumber` implementing `JsonSerializable` ⚡️ **Optimizations** - additional optimization in `BigInteger::remainder()` ## [0.8.14](https://github.com/brick/math/releases/tag/0.8.14) - 2020-02-18 ✨ **New features** - `BigInteger::getLowestSetBit()` returns the index of the rightmost one bit ## [0.8.13](https://github.com/brick/math/releases/tag/0.8.13) - 2020-02-16 ✨ **New features** - `BigInteger::isEven()` tests whether the number is even - `BigInteger::isOdd()` tests whether the number is odd - `BigInteger::testBit()` tests if a bit is set - `BigInteger::getBitLength()` returns the number of bits in the minimal representation of the number ## [0.8.12](https://github.com/brick/math/releases/tag/0.8.12) - 2020-02-03 🛠️ **Maintenance release** Classes are now annotated for better static analysis with [psalm](https://psalm.dev/). This is a maintenance release: no bug fixes, no new features, no breaking changes. ## [0.8.11](https://github.com/brick/math/releases/tag/0.8.11) - 2020-01-23 ✨ **New feature** `BigInteger::powerMod()` performs a power-with-modulo operation. Useful for crypto. ## [0.8.10](https://github.com/brick/math/releases/tag/0.8.10) - 2020-01-21 ✨ **New feature** `BigInteger::mod()` returns the **modulo** of two numbers. The *modulo* differs from the *remainder* when the signs of the operands are different. ## [0.8.9](https://github.com/brick/math/releases/tag/0.8.9) - 2020-01-08 ⚡️ **Performance improvements** A few additional optimizations in `BigInteger` and `BigDecimal` when one of the operands can be returned as is. Thanks to @tomtomsen in #24. ## [0.8.8](https://github.com/brick/math/releases/tag/0.8.8) - 2019-04-25 🐛 **Bug fixes** - `BigInteger::toBase()` could return an empty string for zero values (BCMath & Native calculators only, GMP calculator unaffected) ✨ **New features** - `BigInteger::toArbitraryBase()` converts a number to an arbitrary base, using a custom alphabet - `BigInteger::fromArbitraryBase()` converts a string in an arbitrary base, using a custom alphabet, back to a number These methods can be used as the foundation to convert strings between different bases/alphabets, using BigInteger as an intermediate representation. 💩 **Deprecations** - `BigInteger::parse()` is now deprecated in favour of `fromBase()` `BigInteger::fromBase()` works the same way as `parse()`, with 2 minor differences: - the `$base` parameter is required, it does not default to `10` - it throws a `NumberFormatException` instead of an `InvalidArgumentException` when the number is malformed ## [0.8.7](https://github.com/brick/math/releases/tag/0.8.7) - 2019-04-20 **Improvements** - Safer conversion from `float` when using custom locales - **Much faster** `NativeCalculator` implementation 🚀 You can expect **at least a 3x performance improvement** for common arithmetic operations when using the library on systems without GMP or BCMath; it gets exponentially faster on multiplications with a high number of digits. This is due to calculations now being performed on whole blocks of digits (the block size depending on the platform, 32-bit or 64-bit) instead of digit-by-digit as before. ## [0.8.6](https://github.com/brick/math/releases/tag/0.8.6) - 2019-04-11 **New method** `BigNumber::sum()` returns the sum of one or more numbers. ## [0.8.5](https://github.com/brick/math/releases/tag/0.8.5) - 2019-02-12 **Bug fix**: `of()` factory methods could fail when passing a `float` in environments using a `LC_NUMERIC` locale with a decimal separator other than `'.'` (#20). Thanks @manowark 👍 ## [0.8.4](https://github.com/brick/math/releases/tag/0.8.4) - 2018-12-07 **New method** `BigDecimal::sqrt()` calculates the square root of a decimal number, to a given scale. ## [0.8.3](https://github.com/brick/math/releases/tag/0.8.3) - 2018-12-06 **New method** `BigInteger::sqrt()` calculates the square root of a number (thanks @peter279k). **New exception** `NegativeNumberException` is thrown when calling `sqrt()` on a negative number. ## [0.8.2](https://github.com/brick/math/releases/tag/0.8.2) - 2018-11-08 **Performance update** - Further improvement of `toInt()` performance - `NativeCalculator` can now perform some multiplications more efficiently ## [0.8.1](https://github.com/brick/math/releases/tag/0.8.1) - 2018-11-07 Performance optimization of `toInt()` methods. ## [0.8.0](https://github.com/brick/math/releases/tag/0.8.0) - 2018-10-13 **Breaking changes** The following deprecated methods have been removed. Use the new method name instead: | Method removed | Replacement method | | --- | --- | | `BigDecimal::getIntegral()` | `BigDecimal::getIntegralPart()` | | `BigDecimal::getFraction()` | `BigDecimal::getFractionalPart()` | --- **New features** `BigInteger` has been augmented with 5 new methods for bitwise operations: | New method | Description | | --- | --- | | `and()` | performs a bitwise `AND` operation on two numbers | | `or()` | performs a bitwise `OR` operation on two numbers | | `xor()` | performs a bitwise `XOR` operation on two numbers | | `shiftedLeft()` | returns the number shifted left by a number of bits | | `shiftedRight()` | returns the number shifted right by a number of bits | Thanks to @DASPRiD 👍 ## [0.7.3](https://github.com/brick/math/releases/tag/0.7.3) - 2018-08-20 **New method:** `BigDecimal::hasNonZeroFractionalPart()` **Renamed/deprecated methods:** - `BigDecimal::getIntegral()` has been renamed to `getIntegralPart()` and is now deprecated - `BigDecimal::getFraction()` has been renamed to `getFractionalPart()` and is now deprecated ## [0.7.2](https://github.com/brick/math/releases/tag/0.7.2) - 2018-07-21 **Performance update** `BigInteger::parse()` and `toBase()` now use GMP's built-in base conversion features when available. ## [0.7.1](https://github.com/brick/math/releases/tag/0.7.1) - 2018-03-01 This is a maintenance release, no code has been changed. - When installed with `--no-dev`, the autoloader does not autoload tests anymore - Tests and other files unnecessary for production are excluded from the dist package This will help make installations more compact. ## [0.7.0](https://github.com/brick/math/releases/tag/0.7.0) - 2017-10-02 Methods renamed: - `BigNumber:sign()` has been renamed to `getSign()` - `BigDecimal::unscaledValue()` has been renamed to `getUnscaledValue()` - `BigDecimal::scale()` has been renamed to `getScale()` - `BigDecimal::integral()` has been renamed to `getIntegral()` - `BigDecimal::fraction()` has been renamed to `getFraction()` - `BigRational::numerator()` has been renamed to `getNumerator()` - `BigRational::denominator()` has been renamed to `getDenominator()` Classes renamed: - `ArithmeticException` has been renamed to `MathException` ## [0.6.2](https://github.com/brick/math/releases/tag/0.6.2) - 2017-10-02 The base class for all exceptions is now `MathException`. `ArithmeticException` has been deprecated, and will be removed in 0.7.0. ## [0.6.1](https://github.com/brick/math/releases/tag/0.6.1) - 2017-10-02 A number of methods have been renamed: - `BigNumber:sign()` is deprecated; use `getSign()` instead - `BigDecimal::unscaledValue()` is deprecated; use `getUnscaledValue()` instead - `BigDecimal::scale()` is deprecated; use `getScale()` instead - `BigDecimal::integral()` is deprecated; use `getIntegral()` instead - `BigDecimal::fraction()` is deprecated; use `getFraction()` instead - `BigRational::numerator()` is deprecated; use `getNumerator()` instead - `BigRational::denominator()` is deprecated; use `getDenominator()` instead The old methods will be removed in version 0.7.0. ## [0.6.0](https://github.com/brick/math/releases/tag/0.6.0) - 2017-08-25 - Minimum PHP version is now [7.1](https://gophp71.org/); for PHP 5.6 and PHP 7.0 support, use version `0.5` - Deprecated method `BigDecimal::withScale()` has been removed; use `toScale()` instead - Method `BigNumber::toInteger()` has been renamed to `toInt()` ## [0.5.4](https://github.com/brick/math/releases/tag/0.5.4) - 2016-10-17 `BigNumber` classes now implement [JsonSerializable](http://php.net/manual/en/class.jsonserializable.php). The JSON output is always a string. ## [0.5.3](https://github.com/brick/math/releases/tag/0.5.3) - 2016-03-31 This is a bugfix release. Dividing by a negative power of 1 with the same scale as the dividend could trigger an incorrect optimization which resulted in a wrong result. See #6. ## [0.5.2](https://github.com/brick/math/releases/tag/0.5.2) - 2015-08-06 The `$scale` parameter of `BigDecimal::dividedBy()` is now optional again. ## [0.5.1](https://github.com/brick/math/releases/tag/0.5.1) - 2015-07-05 **New method: `BigNumber::toScale()`** This allows to convert any `BigNumber` to a `BigDecimal` with a given scale, using rounding if necessary. ## [0.5.0](https://github.com/brick/math/releases/tag/0.5.0) - 2015-07-04 **New features** - Common `BigNumber` interface for all classes, with the following methods: - `sign()` and derived methods (`isZero()`, `isPositive()`, ...) - `compareTo()` and derived methods (`isEqualTo()`, `isGreaterThan()`, ...) that work across different `BigNumber` types - `toBigInteger()`, `toBigDecimal()`, `toBigRational`() conversion methods - `toInteger()` and `toFloat()` conversion methods to native types - Unified `of()` behaviour: every class now accepts any type of number, provided that it can be safely converted to the current type - New method: `BigDecimal::exactlyDividedBy()`; this method automatically computes the scale of the result, provided that the division yields a finite number of digits - New methods: `BigRational::quotient()` and `remainder()` - Fine-grained exceptions: `DivisionByZeroException`, `RoundingNecessaryException`, `NumberFormatException` - Factory methods `zero()`, `one()` and `ten()` available in all classes - Rounding mode reintroduced in `BigInteger::dividedBy()` This release also comes with many performance improvements. --- **Breaking changes** - `BigInteger`: - `getSign()` is renamed to `sign()` - `toString()` is renamed to `toBase()` - `BigInteger::dividedBy()` now throws an exception by default if the remainder is not zero; use `quotient()` to get the previous behaviour - `BigDecimal`: - `getSign()` is renamed to `sign()` - `getUnscaledValue()` is renamed to `unscaledValue()` - `getScale()` is renamed to `scale()` - `getIntegral()` is renamed to `integral()` - `getFraction()` is renamed to `fraction()` - `divideAndRemainder()` is renamed to `quotientAndRemainder()` - `dividedBy()` now takes a **mandatory** `$scale` parameter **before** the rounding mode - `toBigInteger()` does not accept a `$roundingMode` parameter anymore - `toBigRational()` does not simplify the fraction anymore; explicitly add `->simplified()` to get the previous behaviour - `BigRational`: - `getSign()` is renamed to `sign()` - `getNumerator()` is renamed to `numerator()` - `getDenominator()` is renamed to `denominator()` - `of()` is renamed to `nd()`, while `parse()` is renamed to `of()` - Miscellaneous: - `ArithmeticException` is moved to an `Exception\` sub-namespace - `of()` factory methods now throw `NumberFormatException` instead of `InvalidArgumentException` ## [0.4.3](https://github.com/brick/math/releases/tag/0.4.3) - 2016-03-31 Backport of two bug fixes from the 0.5 branch: - `BigInteger::parse()` did not always throw `InvalidArgumentException` as expected - Dividing by a negative power of 1 with the same scale as the dividend could trigger an incorrect optimization which resulted in a wrong result. See #6. ## [0.4.2](https://github.com/brick/math/releases/tag/0.4.2) - 2015-06-16 New method: `BigDecimal::stripTrailingZeros()` ## [0.4.1](https://github.com/brick/math/releases/tag/0.4.1) - 2015-06-12 Introducing a `BigRational` class, to perform calculations on fractions of any size. ## [0.4.0](https://github.com/brick/math/releases/tag/0.4.0) - 2015-06-12 Rounding modes have been removed from `BigInteger`, and are now a concept specific to `BigDecimal`. `BigInteger::dividedBy()` now always returns the quotient of the division. ## [0.3.5](https://github.com/brick/math/releases/tag/0.3.5) - 2016-03-31 Backport of two bug fixes from the 0.5 branch: - `BigInteger::parse()` did not always throw `InvalidArgumentException` as expected - Dividing by a negative power of 1 with the same scale as the dividend could trigger an incorrect optimization which resulted in a wrong result. See #6. ## [0.3.4](https://github.com/brick/math/releases/tag/0.3.4) - 2015-06-11 New methods: - `BigInteger::remainder()` returns the remainder of a division only - `BigInteger::gcd()` returns the greatest common divisor of two numbers ## [0.3.3](https://github.com/brick/math/releases/tag/0.3.3) - 2015-06-07 Fix `toString()` not handling negative numbers. ## [0.3.2](https://github.com/brick/math/releases/tag/0.3.2) - 2015-06-07 `BigInteger` and `BigDecimal` now have a `getSign()` method that returns: - `-1` if the number is negative - `0` if the number is zero - `1` if the number is positive ## [0.3.1](https://github.com/brick/math/releases/tag/0.3.1) - 2015-06-05 Minor performance improvements ## [0.3.0](https://github.com/brick/math/releases/tag/0.3.0) - 2015-06-04 The `$roundingMode` and `$scale` parameters have been swapped in `BigDecimal::dividedBy()`. ## [0.2.2](https://github.com/brick/math/releases/tag/0.2.2) - 2015-06-04 Stronger immutability guarantee for `BigInteger` and `BigDecimal`. So far, it would have been possible to break immutability of these classes by calling the `unserialize()` internal function. This release fixes that. ## [0.2.1](https://github.com/brick/math/releases/tag/0.2.1) - 2015-06-02 Added `BigDecimal::divideAndRemainder()` ## [0.2.0](https://github.com/brick/math/releases/tag/0.2.0) - 2015-05-22 - `min()` and `max()` do not accept an `array` anymore, but a variable number of parameters - **minimum PHP version is now 5.6** - continuous integration with PHP 7 ## [0.1.1](https://github.com/brick/math/releases/tag/0.1.1) - 2014-09-01 - Added `BigInteger::power()` - Added HHVM support ## [0.1.0](https://github.com/brick/math/releases/tag/0.1.0) - 2014-08-31 First beta release. PK 3��Z滭r�5 �5 1 math/src/Internal/Calculator/NativeCalculator.phpnu �[��� <?php declare(strict_types=1); namespace Brick\Math\Internal\Calculator; use Brick\Math\Internal\Calculator; /** * Calculator implementation using only native PHP code. * * @internal * * @psalm-immutable */ class NativeCalculator extends Calculator { /** * The max number of digits the platform can natively add, subtract, multiply or divide without overflow. * For multiplication, this represents the max sum of the lengths of both operands. * * In addition, it is assumed that an extra digit can hold a carry (1) without overflowing. * Example: 32-bit: max number 1,999,999,999 (9 digits + carry) * 64-bit: max number 1,999,999,999,999,999,999 (18 digits + carry) */ private int $maxDigits; /** * @codeCoverageIgnore */ public function __construct() { switch (PHP_INT_SIZE) { case 4: $this->maxDigits = 9; break; case 8: $this->maxDigits = 18; break; default: throw new \RuntimeException('The platform is not 32-bit or 64-bit as expected.'); } } public function add(string $a, string $b) : string { /** * @psalm-var numeric-string $a * @psalm-var numeric-string $b */ $result = $a + $b; if (is_int($result)) { return (string) $result; } if ($a === '0') { return $b; } if ($b === '0') { return $a; } [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); $result = $aNeg === $bNeg ? $this->doAdd($aDig, $bDig) : $this->doSub($aDig, $bDig); if ($aNeg) { $result = $this->neg($result); } return $result; } public function sub(string $a, string $b) : string { return $this->add($a, $this->neg($b)); } public function mul(string $a, string $b) : string { /** * @psalm-var numeric-string $a * @psalm-var numeric-string $b */ $result = $a * $b; if (is_int($result)) { return (string) $result; } if ($a === '0' || $b === '0') { return '0'; } if ($a === '1') { return $b; } if ($b === '1') { return $a; } if ($a === '-1') { return $this->neg($b); } if ($b === '-1') { return $this->neg($a); } [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); $result = $this->doMul($aDig, $bDig); if ($aNeg !== $bNeg) { $result = $this->neg($result); } return $result; } public function divQ(string $a, string $b) : string { return $this->divQR($a, $b)[0]; } public function divR(string $a, string $b): string { return $this->divQR($a, $b)[1]; } public function divQR(string $a, string $b) : array { if ($a === '0') { return ['0', '0']; } if ($a === $b) { return ['1', '0']; } if ($b === '1') { return [$a, '0']; } if ($b === '-1') { return [$this->neg($a), '0']; } /** @psalm-var numeric-string $a */ $na = $a * 1; // cast to number if (is_int($na)) { /** @psalm-var numeric-string $b */ $nb = $b * 1; if (is_int($nb)) { // the only division that may overflow is PHP_INT_MIN / -1, // which cannot happen here as we've already handled a divisor of -1 above. $r = $na % $nb; $q = ($na - $r) / $nb; assert(is_int($q)); return [ (string) $q, (string) $r ]; } } [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); [$q, $r] = $this->doDiv($aDig, $bDig); if ($aNeg !== $bNeg) { $q = $this->neg($q); } if ($aNeg) { $r = $this->neg($r); } return [$q, $r]; } public function pow(string $a, int $e) : string { if ($e === 0) { return '1'; } if ($e === 1) { return $a; } $odd = $e % 2; $e -= $odd; $aa = $this->mul($a, $a); /** @psalm-suppress PossiblyInvalidArgument We're sure that $e / 2 is an int now */ $result = $this->pow($aa, $e / 2); if ($odd === 1) { $result = $this->mul($result, $a); } return $result; } /** * Algorithm from: https://www.geeksforgeeks.org/modular-exponentiation-power-in-modular-arithmetic/ */ public function modPow(string $base, string $exp, string $mod) : string { // special case: the algorithm below fails with 0 power 0 mod 1 (returns 1 instead of 0) if ($base === '0' && $exp === '0' && $mod === '1') { return '0'; } // special case: the algorithm below fails with power 0 mod 1 (returns 1 instead of 0) if ($exp === '0' && $mod === '1') { return '0'; } $x = $base; $res = '1'; // numbers are positive, so we can use remainder instead of modulo $x = $this->divR($x, $mod); while ($exp !== '0') { if (in_array($exp[-1], ['1', '3', '5', '7', '9'])) { // odd $res = $this->divR($this->mul($res, $x), $mod); } $exp = $this->divQ($exp, '2'); $x = $this->divR($this->mul($x, $x), $mod); } return $res; } /** * Adapted from https://cp-algorithms.com/num_methods/roots_newton.html */ public function sqrt(string $n) : string { if ($n === '0') { return '0'; } // initial approximation $x = \str_repeat('9', \intdiv(\strlen($n), 2) ?: 1); $decreased = false; for (;;) { $nx = $this->divQ($this->add($x, $this->divQ($n, $x)), '2'); if ($x === $nx || $this->cmp($nx, $x) > 0 && $decreased) { break; } $decreased = $this->cmp($nx, $x) < 0; $x = $nx; } return $x; } /** * Performs the addition of two non-signed large integers. */ private function doAdd(string $a, string $b) : string { [$a, $b, $length] = $this->pad($a, $b); $carry = 0; $result = ''; for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) { $blockLength = $this->maxDigits; if ($i < 0) { $blockLength += $i; /** @psalm-suppress LoopInvalidation */ $i = 0; } /** @psalm-var numeric-string $blockA */ $blockA = \substr($a, $i, $blockLength); /** @psalm-var numeric-string $blockB */ $blockB = \substr($b, $i, $blockLength); $sum = (string) ($blockA + $blockB + $carry); $sumLength = \strlen($sum); if ($sumLength > $blockLength) { $sum = \substr($sum, 1); $carry = 1; } else { if ($sumLength < $blockLength) { $sum = \str_repeat('0', $blockLength - $sumLength) . $sum; } $carry = 0; } $result = $sum . $result; if ($i === 0) { break; } } if ($carry === 1) { $result = '1' . $result; } return $result; } /** * Performs the subtraction of two non-signed large integers. */ private function doSub(string $a, string $b) : string { if ($a === $b) { return '0'; } // Ensure that we always subtract to a positive result: biggest minus smallest. $cmp = $this->doCmp($a, $b); $invert = ($cmp === -1); if ($invert) { $c = $a; $a = $b; $b = $c; } [$a, $b, $length] = $this->pad($a, $b); $carry = 0; $result = ''; $complement = 10 ** $this->maxDigits; for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) { $blockLength = $this->maxDigits; if ($i < 0) { $blockLength += $i; /** @psalm-suppress LoopInvalidation */ $i = 0; } /** @psalm-var numeric-string $blockA */ $blockA = \substr($a, $i, $blockLength); /** @psalm-var numeric-string $blockB */ $blockB = \substr($b, $i, $blockLength); $sum = $blockA - $blockB - $carry; if ($sum < 0) { $sum += $complement; $carry = 1; } else { $carry = 0; } $sum = (string) $sum; $sumLength = \strlen($sum); if ($sumLength < $blockLength) { $sum = \str_repeat('0', $blockLength - $sumLength) . $sum; } $result = $sum . $result; if ($i === 0) { break; } } // Carry cannot be 1 when the loop ends, as a > b assert($carry === 0); $result = \ltrim($result, '0'); if ($invert) { $result = $this->neg($result); } return $result; } /** * Performs the multiplication of two non-signed large integers. */ private function doMul(string $a, string $b) : string { $x = \strlen($a); $y = \strlen($b); $maxDigits = \intdiv($this->maxDigits, 2); $complement = 10 ** $maxDigits; $result = '0'; for ($i = $x - $maxDigits;; $i -= $maxDigits) { $blockALength = $maxDigits; if ($i < 0) { $blockALength += $i; /** @psalm-suppress LoopInvalidation */ $i = 0; } $blockA = (int) \substr($a, $i, $blockALength); $line = ''; $carry = 0; for ($j = $y - $maxDigits;; $j -= $maxDigits) { $blockBLength = $maxDigits; if ($j < 0) { $blockBLength += $j; /** @psalm-suppress LoopInvalidation */ $j = 0; } $blockB = (int) \substr($b, $j, $blockBLength); $mul = $blockA * $blockB + $carry; $value = $mul % $complement; $carry = ($mul - $value) / $complement; $value = (string) $value; $value = \str_pad($value, $maxDigits, '0', STR_PAD_LEFT); $line = $value . $line; if ($j === 0) { break; } } if ($carry !== 0) { $line = $carry . $line; } $line = \ltrim($line, '0'); if ($line !== '') { $line .= \str_repeat('0', $x - $blockALength - $i); $result = $this->add($result, $line); } if ($i === 0) { break; } } return $result; } /** * Performs the division of two non-signed large integers. * * @return string[] The quotient and remainder. */ private function doDiv(string $a, string $b) : array { $cmp = $this->doCmp($a, $b); if ($cmp === -1) { return ['0', $a]; } $x = \strlen($a); $y = \strlen($b); // we now know that a >= b && x >= y $q = '0'; // quotient $r = $a; // remainder $z = $y; // focus length, always $y or $y+1 for (;;) { $focus = \substr($a, 0, $z); $cmp = $this->doCmp($focus, $b); if ($cmp === -1) { if ($z === $x) { // remainder < dividend break; } $z++; } $zeros = \str_repeat('0', $x - $z); $q = $this->add($q, '1' . $zeros); $a = $this->sub($a, $b . $zeros); $r = $a; if ($r === '0') { // remainder == 0 break; } $x = \strlen($a); if ($x < $y) { // remainder < dividend break; } $z = $y; } return [$q, $r]; } /** * Compares two non-signed large numbers. * * @return int [-1, 0, 1] */ private function doCmp(string $a, string $b) : int { $x = \strlen($a); $y = \strlen($b); $cmp = $x <=> $y; if ($cmp !== 0) { return $cmp; } return \strcmp($a, $b) <=> 0; // enforce [-1, 0, 1] } /** * Pads the left of one of the given numbers with zeros if necessary to make both numbers the same length. * * The numbers must only consist of digits, without leading minus sign. * * @return array{string, string, int} */ private function pad(string $a, string $b) : array { $x = \strlen($a); $y = \strlen($b); if ($x > $y) { $b = \str_repeat('0', $x - $y) . $b; return [$a, $b, $x]; } if ($x < $y) { $a = \str_repeat('0', $y - $x) . $a; return [$a, $b, $y]; } return [$a, $b, $x]; } } PK 3��ZmK~L . math/src/Internal/Calculator/GmpCalculator.phpnu �[��� <?php declare(strict_types=1); namespace Brick\Math\Internal\Calculator; use Brick\Math\Internal\Calculator; /** * Calculator implementation built around the GMP library. * * @internal * * @psalm-immutable */ class GmpCalculator extends Calculator { public function add(string $a, string $b) : string { return \gmp_strval(\gmp_add($a, $b)); } public function sub(string $a, string $b) : string { return \gmp_strval(\gmp_sub($a, $b)); } public function mul(string $a, string $b) : string { return \gmp_strval(\gmp_mul($a, $b)); } public function divQ(string $a, string $b) : string { return \gmp_strval(\gmp_div_q($a, $b)); } public function divR(string $a, string $b) : string { return \gmp_strval(\gmp_div_r($a, $b)); } public function divQR(string $a, string $b) : array { [$q, $r] = \gmp_div_qr($a, $b); return [ \gmp_strval($q), \gmp_strval($r) ]; } public function pow(string $a, int $e) : string { return \gmp_strval(\gmp_pow($a, $e)); } public function modInverse(string $x, string $m) : ?string { $result = \gmp_invert($x, $m); if ($result === false) { return null; } return \gmp_strval($result); } public function modPow(string $base, string $exp, string $mod) : string { return \gmp_strval(\gmp_powm($base, $exp, $mod)); } public function gcd(string $a, string $b) : string { return \gmp_strval(\gmp_gcd($a, $b)); } public function fromBase(string $number, int $base) : string { return \gmp_strval(\gmp_init($number, $base)); } public function toBase(string $number, int $base) : string { return \gmp_strval($number, $base); } public function and(string $a, string $b) : string { return \gmp_strval(\gmp_and($a, $b)); } public function or(string $a, string $b) : string { return \gmp_strval(\gmp_or($a, $b)); } public function xor(string $a, string $b) : string { return \gmp_strval(\gmp_xor($a, $b)); } public function sqrt(string $n) : string { return \gmp_strval(\gmp_sqrt($n)); } } PK 3��Z[��H� � 1 math/src/Internal/Calculator/BcMathCalculator.phpnu �[��� <?php declare(strict_types=1); namespace Brick\Math\Internal\Calculator; use Brick\Math\Internal\Calculator; /** * Calculator implementation built around the bcmath library. * * @internal * * @psalm-immutable */ class BcMathCalculator extends Calculator { public function add(string $a, string $b) : string { return \bcadd($a, $b, 0); } public function sub(string $a, string $b) : string { return \bcsub($a, $b, 0); } public function mul(string $a, string $b) : string { return \bcmul($a, $b, 0); } public function divQ(string $a, string $b) : string { return \bcdiv($a, $b, 0); } /** * @psalm-suppress InvalidNullableReturnType * @psalm-suppress NullableReturnStatement */ public function divR(string $a, string $b) : string { return \bcmod($a, $b, 0); } public function divQR(string $a, string $b) : array { $q = \bcdiv($a, $b, 0); $r = \bcmod($a, $b, 0); assert($r !== null); return [$q, $r]; } public function pow(string $a, int $e) : string { return \bcpow($a, (string) $e, 0); } public function modPow(string $base, string $exp, string $mod) : string { return \bcpowmod($base, $exp, $mod, 0); } /** * @psalm-suppress InvalidNullableReturnType * @psalm-suppress NullableReturnStatement */ public function sqrt(string $n) : string { return \bcsqrt($n, 0); } } PK 3��Z��L��K �K math/src/Internal/Calculator.phpnu �[��� <?php declare(strict_types=1); namespace Brick\Math\Internal; use Brick\Math\Exception\RoundingNecessaryException; use Brick\Math\RoundingMode; /** * Performs basic operations on arbitrary size integers. * * Unless otherwise specified, all parameters must be validated as non-empty strings of digits, * without leading zero, and with an optional leading minus sign if the number is not zero. * * Any other parameter format will lead to undefined behaviour. * All methods must return strings respecting this format, unless specified otherwise. * * @internal * * @psalm-immutable */ abstract class Calculator { /** * The maximum exponent value allowed for the pow() method. */ public const MAX_POWER = 1000000; /** * The alphabet for converting from and to base 2 to 36, lowercase. */ public const ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz'; /** * The Calculator instance in use. */ private static ?Calculator $instance = null; /** * Sets the Calculator instance to use. * * An instance is typically set only in unit tests: the autodetect is usually the best option. * * @param Calculator|null $calculator The calculator instance, or NULL to revert to autodetect. */ final public static function set(?Calculator $calculator) : void { self::$instance = $calculator; } /** * Returns the Calculator instance to use. * * If none has been explicitly set, the fastest available implementation will be returned. * * @psalm-pure * @psalm-suppress ImpureStaticProperty */ final public static function get() : Calculator { if (self::$instance === null) { /** @psalm-suppress ImpureMethodCall */ self::$instance = self::detect(); } return self::$instance; } /** * Returns the fastest available Calculator implementation. * * @codeCoverageIgnore */ private static function detect() : Calculator { if (\extension_loaded('gmp')) { return new Calculator\GmpCalculator(); } if (\extension_loaded('bcmath')) { return new Calculator\BcMathCalculator(); } return new Calculator\NativeCalculator(); } /** * Extracts the sign & digits of the operands. * * @return array{bool, bool, string, string} Whether $a and $b are negative, followed by their digits. */ final protected function init(string $a, string $b) : array { return [ $aNeg = ($a[0] === '-'), $bNeg = ($b[0] === '-'), $aNeg ? \substr($a, 1) : $a, $bNeg ? \substr($b, 1) : $b, ]; } /** * Returns the absolute value of a number. */ final public function abs(string $n) : string { return ($n[0] === '-') ? \substr($n, 1) : $n; } /** * Negates a number. */ final public function neg(string $n) : string { if ($n === '0') { return '0'; } if ($n[0] === '-') { return \substr($n, 1); } return '-' . $n; } /** * Compares two numbers. * * @return int [-1, 0, 1] If the first number is less than, equal to, or greater than the second number. */ final public function cmp(string $a, string $b) : int { [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); if ($aNeg && ! $bNeg) { return -1; } if ($bNeg && ! $aNeg) { return 1; } $aLen = \strlen($aDig); $bLen = \strlen($bDig); if ($aLen < $bLen) { $result = -1; } elseif ($aLen > $bLen) { $result = 1; } else { $result = $aDig <=> $bDig; } return $aNeg ? -$result : $result; } /** * Adds two numbers. */ abstract public function add(string $a, string $b) : string; /** * Subtracts two numbers. */ abstract public function sub(string $a, string $b) : string; /** * Multiplies two numbers. */ abstract public function mul(string $a, string $b) : string; /** * Returns the quotient of the division of two numbers. * * @param string $a The dividend. * @param string $b The divisor, must not be zero. * * @return string The quotient. */ abstract public function divQ(string $a, string $b) : string; /** * Returns the remainder of the division of two numbers. * * @param string $a The dividend. * @param string $b The divisor, must not be zero. * * @return string The remainder. */ abstract public function divR(string $a, string $b) : string; /** * Returns the quotient and remainder of the division of two numbers. * * @param string $a The dividend. * @param string $b The divisor, must not be zero. * * @return array{string, string} An array containing the quotient and remainder. */ abstract public function divQR(string $a, string $b) : array; /** * Exponentiates a number. * * @param string $a The base number. * @param int $e The exponent, validated as an integer between 0 and MAX_POWER. * * @return string The power. */ abstract public function pow(string $a, int $e) : string; /** * @param string $b The modulus; must not be zero. */ public function mod(string $a, string $b) : string { return $this->divR($this->add($this->divR($a, $b), $b), $b); } /** * Returns the modular multiplicative inverse of $x modulo $m. * * If $x has no multiplicative inverse mod m, this method must return null. * * This method can be overridden by the concrete implementation if the underlying library has built-in support. * * @param string $m The modulus; must not be negative or zero. */ public function modInverse(string $x, string $m) : ?string { if ($m === '1') { return '0'; } $modVal = $x; if ($x[0] === '-' || ($this->cmp($this->abs($x), $m) >= 0)) { $modVal = $this->mod($x, $m); } [$g, $x] = $this->gcdExtended($modVal, $m); if ($g !== '1') { return null; } return $this->mod($this->add($this->mod($x, $m), $m), $m); } /** * Raises a number into power with modulo. * * @param string $base The base number; must be positive or zero. * @param string $exp The exponent; must be positive or zero. * @param string $mod The modulus; must be strictly positive. */ abstract public function modPow(string $base, string $exp, string $mod) : string; /** * Returns the greatest common divisor of the two numbers. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for GCD calculations. * * @return string The GCD, always positive, or zero if both arguments are zero. */ public function gcd(string $a, string $b) : string { if ($a === '0') { return $this->abs($b); } if ($b === '0') { return $this->abs($a); } return $this->gcd($b, $this->divR($a, $b)); } /** * @return array{string, string, string} GCD, X, Y */ private function gcdExtended(string $a, string $b) : array { if ($a === '0') { return [$b, '0', '1']; } [$gcd, $x1, $y1] = $this->gcdExtended($this->mod($b, $a), $a); $x = $this->sub($y1, $this->mul($this->divQ($b, $a), $x1)); $y = $x1; return [$gcd, $x, $y]; } /** * Returns the square root of the given number, rounded down. * * The result is the largest x such that x² ≤ n. * The input MUST NOT be negative. */ abstract public function sqrt(string $n) : string; /** * Converts a number from an arbitrary base. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for base conversion. * * @param string $number The number, positive or zero, non-empty, case-insensitively validated for the given base. * @param int $base The base of the number, validated from 2 to 36. * * @return string The converted number, following the Calculator conventions. */ public function fromBase(string $number, int $base) : string { return $this->fromArbitraryBase(\strtolower($number), self::ALPHABET, $base); } /** * Converts a number to an arbitrary base. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for base conversion. * * @param string $number The number to convert, following the Calculator conventions. * @param int $base The base to convert to, validated from 2 to 36. * * @return string The converted number, lowercase. */ public function toBase(string $number, int $base) : string { $negative = ($number[0] === '-'); if ($negative) { $number = \substr($number, 1); } $number = $this->toArbitraryBase($number, self::ALPHABET, $base); if ($negative) { return '-' . $number; } return $number; } /** * Converts a non-negative number in an arbitrary base using a custom alphabet, to base 10. * * @param string $number The number to convert, validated as a non-empty string, * containing only chars in the given alphabet/base. * @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum. * @param int $base The base of the number, validated from 2 to alphabet length. * * @return string The number in base 10, following the Calculator conventions. */ final public function fromArbitraryBase(string $number, string $alphabet, int $base) : string { // remove leading "zeros" $number = \ltrim($number, $alphabet[0]); if ($number === '') { return '0'; } // optimize for "one" if ($number === $alphabet[1]) { return '1'; } $result = '0'; $power = '1'; $base = (string) $base; for ($i = \strlen($number) - 1; $i >= 0; $i--) { $index = \strpos($alphabet, $number[$i]); if ($index !== 0) { $result = $this->add($result, ($index === 1) ? $power : $this->mul($power, (string) $index) ); } if ($i !== 0) { $power = $this->mul($power, $base); } } return $result; } /** * Converts a non-negative number to an arbitrary base using a custom alphabet. * * @param string $number The number to convert, positive or zero, following the Calculator conventions. * @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum. * @param int $base The base to convert to, validated from 2 to alphabet length. * * @return string The converted number in the given alphabet. */ final public function toArbitraryBase(string $number, string $alphabet, int $base) : string { if ($number === '0') { return $alphabet[0]; } $base = (string) $base; $result = ''; while ($number !== '0') { [$number, $remainder] = $this->divQR($number, $base); $remainder = (int) $remainder; $result .= $alphabet[$remainder]; } return \strrev($result); } /** * Performs a rounded division. * * Rounding is performed when the remainder of the division is not zero. * * @param string $a The dividend. * @param string $b The divisor, must not be zero. * @param int $roundingMode The rounding mode. * * @throws \InvalidArgumentException If the rounding mode is invalid. * @throws RoundingNecessaryException If RoundingMode::UNNECESSARY is provided but rounding is necessary. * * @psalm-suppress ImpureFunctionCall */ final public function divRound(string $a, string $b, int $roundingMode) : string { [$quotient, $remainder] = $this->divQR($a, $b); $hasDiscardedFraction = ($remainder !== '0'); $isPositiveOrZero = ($a[0] === '-') === ($b[0] === '-'); $discardedFractionSign = function() use ($remainder, $b) : int { $r = $this->abs($this->mul($remainder, '2')); $b = $this->abs($b); return $this->cmp($r, $b); }; $increment = false; switch ($roundingMode) { case RoundingMode::UNNECESSARY: if ($hasDiscardedFraction) { throw RoundingNecessaryException::roundingNecessary(); } break; case RoundingMode::UP: $increment = $hasDiscardedFraction; break; case RoundingMode::DOWN: break; case RoundingMode::CEILING: $increment = $hasDiscardedFraction && $isPositiveOrZero; break; case RoundingMode::FLOOR: $increment = $hasDiscardedFraction && ! $isPositiveOrZero; break; case RoundingMode::HALF_UP: $increment = $discardedFractionSign() >= 0; break; case RoundingMode::HALF_DOWN: $increment = $discardedFractionSign() > 0; break; case RoundingMode::HALF_CEILING: $increment = $isPositiveOrZero ? $discardedFractionSign() >= 0 : $discardedFractionSign() > 0; break; case RoundingMode::HALF_FLOOR: $increment = $isPositiveOrZero ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0; break; case RoundingMode::HALF_EVEN: $lastDigit = (int) $quotient[-1]; $lastDigitIsEven = ($lastDigit % 2 === 0); $increment = $lastDigitIsEven ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0; break; default: throw new \InvalidArgumentException('Invalid rounding mode.'); } if ($increment) { return $this->add($quotient, $isPositiveOrZero ? '1' : '-1'); } return $quotient; } /** * Calculates bitwise AND of two numbers. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for bitwise operations. */ public function and(string $a, string $b) : string { return $this->bitwise('and', $a, $b); } /** * Calculates bitwise OR of two numbers. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for bitwise operations. */ public function or(string $a, string $b) : string { return $this->bitwise('or', $a, $b); } /** * Calculates bitwise XOR of two numbers. * * This method can be overridden by the concrete implementation if the underlying library * has built-in support for bitwise operations. */ public function xor(string $a, string $b) : string { return $this->bitwise('xor', $a, $b); } /** * Performs a bitwise operation on a decimal number. * * @param 'and'|'or'|'xor' $operator The operator to use. * @param string $a The left operand. * @param string $b The right operand. */ private function bitwise(string $operator, string $a, string $b) : string { [$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b); $aBin = $this->toBinary($aDig); $bBin = $this->toBinary($bDig); $aLen = \strlen($aBin); $bLen = \strlen($bBin); if ($aLen > $bLen) { $bBin = \str_repeat("\x00", $aLen - $bLen) . $bBin; } elseif ($bLen > $aLen) { $aBin = \str_repeat("\x00", $bLen - $aLen) . $aBin; } if ($aNeg) { $aBin = $this->twosComplement($aBin); } if ($bNeg) { $bBin = $this->twosComplement($bBin); } switch ($operator) { case 'and': $value = $aBin & $bBin; $negative = ($aNeg and $bNeg); break; case 'or': $value = $aBin | $bBin; $negative = ($aNeg or $bNeg); break; case 'xor': $value = $aBin ^ $bBin; $negative = ($aNeg xor $bNeg); break; // @codeCoverageIgnoreStart default: throw new \InvalidArgumentException('Invalid bitwise operator.'); // @codeCoverageIgnoreEnd } if ($negative) { $value = $this->twosComplement($value); } $result = $this->toDecimal($value); return $negative ? $this->neg($result) : $result; } /** * @param string $number A positive, binary number. */ private function twosComplement(string $number) : string { $xor = \str_repeat("\xff", \strlen($number)); $number ^= $xor; for ($i = \strlen($number) - 1; $i >= 0; $i--) { $byte = \ord($number[$i]); if (++$byte !== 256) { $number[$i] = \chr($byte); break; } $number[$i] = "\x00"; if ($i === 0) { $number = "\x01" . $number; } } return $number; } /** * Converts a decimal number to a binary string. * * @param string $number The number to convert, positive or zero, only digits. */ private function toBinary(string $number) : string { $result = ''; while ($number !== '0') { [$number, $remainder] = $this->divQR($number, '256'); $result .= \chr((int) $remainder); } return \strrev($result); } /** * Returns the positive decimal representation of a binary number. * * @param string $bytes The bytes representing the number. */ private function toDecimal(string $bytes) : string { $result = '0'; $power = '1'; for ($i = \strlen($bytes) - 1; $i >= 0; $i--) { $index = \ord($bytes[$i]); if ($index !== 0) { $result = $this->add($result, ($index === 1) ? $power : $this->mul($power, (string) $index) ); } if ($i !== 0) { $power = $this->mul($power, '256'); } } return $result; } } PK 3��Z� �nEW EW math/src/BigDecimal.phpnu �[��� <?php declare(strict_types=1); namespace Brick\Math; use Brick\Math\Exception\DivisionByZeroException; use Brick\Math\Exception\MathException; use Brick\Math\Exception\NegativeNumberException; use Brick\Math\Internal\Calculator; /** * Immutable, arbitrary-precision signed decimal numbers. * * @psalm-immutable */ final class BigDecimal extends BigNumber { /** * The unscaled value of this decimal number. * * This is a string of digits with an optional leading minus sign. * No leading zero must be present. * No leading minus sign must be present if the value is 0. */ private string $value; /** * The scale (number of digits after the decimal point) of this decimal number. * * This must be zero or more. */ private int $scale; /** * Protected constructor. Use a factory method to obtain an instance. * * @param string $value The unscaled value, validated. * @param int $scale The scale, validated. */ protected function __construct(string $value, int $scale = 0) { $this->value = $value; $this->scale = $scale; } /** * Creates a BigDecimal of the given value. * * @throws MathException If the value cannot be converted to a BigDecimal. * * @psalm-pure */ public static function of(BigNumber|int|float|string $value) : BigDecimal { return parent::of($value)->toBigDecimal(); } /** * Creates a BigDecimal from an unscaled value and a scale. * * Example: `(12345, 3)` will result in the BigDecimal `12.345`. * * @param BigNumber|int|float|string $value The unscaled value. Must be convertible to a BigInteger. * @param int $scale The scale of the number, positive or zero. * * @throws \InvalidArgumentException If the scale is negative. * * @psalm-pure */ public static function ofUnscaledValue(BigNumber|int|float|string $value, int $scale = 0) : BigDecimal { if ($scale < 0) { throw new \InvalidArgumentException('The scale cannot be negative.'); } return new BigDecimal((string) BigInteger::of($value), $scale); } /** * Returns a BigDecimal representing zero, with a scale of zero. * * @psalm-pure */ public static function zero() : BigDecimal { /** * @psalm-suppress ImpureStaticVariable * @var BigDecimal|null $zero */ static $zero; if ($zero === null) { $zero = new BigDecimal('0'); } return $zero; } /** * Returns a BigDecimal representing one, with a scale of zero. * * @psalm-pure */ public static function one() : BigDecimal { /** * @psalm-suppress ImpureStaticVariable * @var BigDecimal|null $one */ static $one; if ($one === null) { $one = new BigDecimal('1'); } return $one; } /** * Returns a BigDecimal representing ten, with a scale of zero. * * @psalm-pure */ public static function ten() : BigDecimal { /** * @psalm-suppress ImpureStaticVariable * @var BigDecimal|null $ten */ static $ten; if ($ten === null) { $ten = new BigDecimal('10'); } return $ten; } /** * Returns the sum of this number and the given one. * * The result has a scale of `max($this->scale, $that->scale)`. * * @param BigNumber|int|float|string $that The number to add. Must be convertible to a BigDecimal. * * @throws MathException If the number is not valid, or is not convertible to a BigDecimal. */ public function plus(BigNumber|int|float|string $that) : BigDecimal { $that = BigDecimal::of($that); if ($that->value === '0' && $that->scale <= $this->scale) { return $this; } if ($this->value === '0' && $this->scale <= $that->scale) { return $that; } [$a, $b] = $this->scaleValues($this, $that); $value = Calculator::get()->add($a, $b); $scale = $this->scale > $that->scale ? $this->scale : $that->scale; return new BigDecimal($value, $scale); } /** * Returns the difference of this number and the given one. * * The result has a scale of `max($this->scale, $that->scale)`. * * @param BigNumber|int|float|string $that The number to subtract. Must be convertible to a BigDecimal. * * @throws MathException If the number is not valid, or is not convertible to a BigDecimal. */ public function minus(BigNumber|int|float|string $that) : BigDecimal { $that = BigDecimal::of($that); if ($that->value === '0' && $that->scale <= $this->scale) { return $this; } [$a, $b] = $this->scaleValues($this, $that); $value = Calculator::get()->sub($a, $b); $scale = $this->scale > $that->scale ? $this->scale : $that->scale; return new BigDecimal($value, $scale); } /** * Returns the product of this number and the given one. * * The result has a scale of `$this->scale + $that->scale`. * * @param BigNumber|int|float|string $that The multiplier. Must be convertible to a BigDecimal. * * @throws MathException If the multiplier is not a valid number, or is not convertible to a BigDecimal. */ public function multipliedBy(BigNumber|int|float|string $that) : BigDecimal { $that = BigDecimal::of($that); if ($that->value === '1' && $that->scale === 0) { return $this; } if ($this->value === '1' && $this->scale === 0) { return $that; } $value = Calculator::get()->mul($this->value, $that->value); $scale = $this->scale + $that->scale; return new BigDecimal($value, $scale); } /** * Returns the result of the division of this number by the given one, at the given scale. * * @param BigNumber|int|float|string $that The divisor. * @param int|null $scale The desired scale, or null to use the scale of this number. * @param int $roundingMode An optional rounding mode. * * @throws \InvalidArgumentException If the scale or rounding mode is invalid. * @throws MathException If the number is invalid, is zero, or rounding was necessary. */ public function dividedBy(BigNumber|int|float|string $that, ?int $scale = null, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal { $that = BigDecimal::of($that); if ($that->isZero()) { throw DivisionByZeroException::divisionByZero(); } if ($scale === null) { $scale = $this->scale; } elseif ($scale < 0) { throw new \InvalidArgumentException('Scale cannot be negative.'); } if ($that->value === '1' && $that->scale === 0 && $scale === $this->scale) { return $this; } $p = $this->valueWithMinScale($that->scale + $scale); $q = $that->valueWithMinScale($this->scale - $scale); $result = Calculator::get()->divRound($p, $q, $roundingMode); return new BigDecimal($result, $scale); } /** * Returns the exact result of the division of this number by the given one. * * The scale of the result is automatically calculated to fit all the fraction digits. * * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal. * * @throws MathException If the divisor is not a valid number, is not convertible to a BigDecimal, is zero, * or the result yields an infinite number of digits. */ public function exactlyDividedBy(BigNumber|int|float|string $that) : BigDecimal { $that = BigDecimal::of($that); if ($that->value === '0') { throw DivisionByZeroException::divisionByZero(); } [, $b] = $this->scaleValues($this, $that); $d = \rtrim($b, '0'); $scale = \strlen($b) - \strlen($d); $calculator = Calculator::get(); foreach ([5, 2] as $prime) { for (;;) { $lastDigit = (int) $d[-1]; if ($lastDigit % $prime !== 0) { break; } $d = $calculator->divQ($d, (string) $prime); $scale++; } } return $this->dividedBy($that, $scale)->stripTrailingZeros(); } /** * Returns this number exponentiated to the given value. * * The result has a scale of `$this->scale * $exponent`. * * @throws \InvalidArgumentException If the exponent is not in the range 0 to 1,000,000. */ public function power(int $exponent) : BigDecimal { if ($exponent === 0) { return BigDecimal::one(); } if ($exponent === 1) { return $this; } if ($exponent < 0 || $exponent > Calculator::MAX_POWER) { throw new \InvalidArgumentException(\sprintf( 'The exponent %d is not in the range 0 to %d.', $exponent, Calculator::MAX_POWER )); } return new BigDecimal(Calculator::get()->pow($this->value, $exponent), $this->scale * $exponent); } /** * Returns the quotient of the division of this number by this given one. * * The quotient has a scale of `0`. * * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal. * * @throws MathException If the divisor is not a valid decimal number, or is zero. */ public function quotient(BigNumber|int|float|string $that) : BigDecimal { $that = BigDecimal::of($that); if ($that->isZero()) { throw DivisionByZeroException::divisionByZero(); } $p = $this->valueWithMinScale($that->scale); $q = $that->valueWithMinScale($this->scale); $quotient = Calculator::get()->divQ($p, $q); return new BigDecimal($quotient, 0); } /** * Returns the remainder of the division of this number by this given one. * * The remainder has a scale of `max($this->scale, $that->scale)`. * * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal. * * @throws MathException If the divisor is not a valid decimal number, or is zero. */ public function remainder(BigNumber|int|float|string $that) : BigDecimal { $that = BigDecimal::of($that); if ($that->isZero()) { throw DivisionByZeroException::divisionByZero(); } $p = $this->valueWithMinScale($that->scale); $q = $that->valueWithMinScale($this->scale); $remainder = Calculator::get()->divR($p, $q); $scale = $this->scale > $that->scale ? $this->scale : $that->scale; return new BigDecimal($remainder, $scale); } /** * Returns the quotient and remainder of the division of this number by the given one. * * The quotient has a scale of `0`, and the remainder has a scale of `max($this->scale, $that->scale)`. * * @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal. * * @return BigDecimal[] An array containing the quotient and the remainder. * * @throws MathException If the divisor is not a valid decimal number, or is zero. */ public function quotientAndRemainder(BigNumber|int|float|string $that) : array { $that = BigDecimal::of($that); if ($that->isZero()) { throw DivisionByZeroException::divisionByZero(); } $p = $this->valueWithMinScale($that->scale); $q = $that->valueWithMinScale($this->scale); [$quotient, $remainder] = Calculator::get()->divQR($p, $q); $scale = $this->scale > $that->scale ? $this->scale : $that->scale; $quotient = new BigDecimal($quotient, 0); $remainder = new BigDecimal($remainder, $scale); return [$quotient, $remainder]; } /** * Returns the square root of this number, rounded down to the given number of decimals. * * @throws \InvalidArgumentException If the scale is negative. * @throws NegativeNumberException If this number is negative. */ public function sqrt(int $scale) : BigDecimal { if ($scale < 0) { throw new \InvalidArgumentException('Scale cannot be negative.'); } if ($this->value === '0') { return new BigDecimal('0', $scale); } if ($this->value[0] === '-') { throw new NegativeNumberException('Cannot calculate the square root of a negative number.'); } $value = $this->value; $addDigits = 2 * $scale - $this->scale; if ($addDigits > 0) { // add zeros $value .= \str_repeat('0', $addDigits); } elseif ($addDigits < 0) { // trim digits if (-$addDigits >= \strlen($this->value)) { // requesting a scale too low, will always yield a zero result return new BigDecimal('0', $scale); } $value = \substr($value, 0, $addDigits); } $value = Calculator::get()->sqrt($value); return new BigDecimal($value, $scale); } /** * Returns a copy of this BigDecimal with the decimal point moved $n places to the left. */ public function withPointMovedLeft(int $n) : BigDecimal { if ($n === 0) { return $this; } if ($n < 0) { return $this->withPointMovedRight(-$n); } return new BigDecimal($this->value, $this->scale + $n); } /** * Returns a copy of this BigDecimal with the decimal point moved $n places to the right. */ public function withPointMovedRight(int $n) : BigDecimal { if ($n === 0) { return $this; } if ($n < 0) { return $this->withPointMovedLeft(-$n); } $value = $this->value; $scale = $this->scale - $n; if ($scale < 0) { if ($value !== '0') { $value .= \str_repeat('0', -$scale); } $scale = 0; } return new BigDecimal($value, $scale); } /** * Returns a copy of this BigDecimal with any trailing zeros removed from the fractional part. */ public function stripTrailingZeros() : BigDecimal { if ($this->scale === 0) { return $this; } $trimmedValue = \rtrim($this->value, '0'); if ($trimmedValue === '') { return BigDecimal::zero(); } $trimmableZeros = \strlen($this->value) - \strlen($trimmedValue); if ($trimmableZeros === 0) { return $this; } if ($trimmableZeros > $this->scale) { $trimmableZeros = $this->scale; } $value = \substr($this->value, 0, -$trimmableZeros); $scale = $this->scale - $trimmableZeros; return new BigDecimal($value, $scale); } /** * Returns the absolute value of this number. */ public function abs() : BigDecimal { return $this->isNegative() ? $this->negated() : $this; } /** * Returns the negated value of this number. */ public function negated() : BigDecimal { return new BigDecimal(Calculator::get()->neg($this->value), $this->scale); } public function compareTo(BigNumber|int|float|string $that) : int { $that = BigNumber::of($that); if ($that instanceof BigInteger) { $that = $that->toBigDecimal(); } if ($that instanceof BigDecimal) { [$a, $b] = $this->scaleValues($this, $that); return Calculator::get()->cmp($a, $b); } return - $that->compareTo($this); } public function getSign() : int { return ($this->value === '0') ? 0 : (($this->value[0] === '-') ? -1 : 1); } public function getUnscaledValue() : BigInteger { return self::newBigInteger($this->value); } public function getScale() : int { return $this->scale; } /** * Returns a string representing the integral part of this decimal number. * * Example: `-123.456` => `-123`. */ public function getIntegralPart() : string { if ($this->scale === 0) { return $this->value; } $value = $this->getUnscaledValueWithLeadingZeros(); return \substr($value, 0, -$this->scale); } /** * Returns a string representing the fractional part of this decimal number. * * If the scale is zero, an empty string is returned. * * Examples: `-123.456` => '456', `123` => ''. */ public function getFractionalPart() : string { if ($this->scale === 0) { return ''; } $value = $this->getUnscaledValueWithLeadingZeros(); return \substr($value, -$this->scale); } /** * Returns whether this decimal number has a non-zero fractional part. */ public function hasNonZeroFractionalPart() : bool { return $this->getFractionalPart() !== \str_repeat('0', $this->scale); } public function toBigInteger() : BigInteger { $zeroScaleDecimal = $this->scale === 0 ? $this : $this->dividedBy(1, 0); return self::newBigInteger($zeroScaleDecimal->value); } public function toBigDecimal() : BigDecimal { return $this; } public function toBigRational() : BigRational { $numerator = self::newBigInteger($this->value); $denominator = self::newBigInteger('1' . \str_repeat('0', $this->scale)); return self::newBigRational($numerator, $denominator, false); } public function toScale(int $scale, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal { if ($scale === $this->scale) { return $this; } return $this->dividedBy(BigDecimal::one(), $scale, $roundingMode); } public function toInt() : int { return $this->toBigInteger()->toInt(); } public function toFloat() : float { return (float) (string) $this; } public function __toString() : string { if ($this->scale === 0) { return $this->value; } $value = $this->getUnscaledValueWithLeadingZeros(); return \substr($value, 0, -$this->scale) . '.' . \substr($value, -$this->scale); } /** * This method is required for serializing the object and SHOULD NOT be accessed directly. * * @internal * * @return array{value: string, scale: int} */ public function __serialize(): array { return ['value' => $this->value, 'scale' => $this->scale]; } /** * This method is only here to allow unserializing the object and cannot be accessed directly. * * @internal * @psalm-suppress RedundantPropertyInitializationCheck * * @param array{value: string, scale: int} $data * * @throws \LogicException */ public function __unserialize(array $data): void { if (isset($this->value)) { throw new \LogicException('__unserialize() is an internal function, it must not be called directly.'); } $this->value = $data['value']; $this->scale = $data['scale']; } /** * This method is required by interface Serializable and SHOULD NOT be accessed directly. * * @internal */ public function serialize() : string { return $this->value . ':' . $this->scale; } /** * This method is only here to implement interface Serializable and cannot be accessed directly. * * @internal * @psalm-suppress RedundantPropertyInitializationCheck * * @throws \LogicException */ public function unserialize($value) : void { if (isset($this->value)) { throw new \LogicException('unserialize() is an internal function, it must not be called directly.'); } [$value, $scale] = \explode(':', $value); $this->value = $value; $this->scale = (int) $scale; } /** * Puts the internal values of the given decimal numbers on the same scale. * * @return array{string, string} The scaled integer values of $x and $y. */ private function scaleValues(BigDecimal $x, BigDecimal $y) : array { $a = $x->value; $b = $y->value; if ($b !== '0' && $x->scale > $y->scale) { $b .= \str_repeat('0', $x->scale - $y->scale); } elseif ($a !== '0' && $x->scale < $y->scale) { $a .= \str_repeat('0', $y->scale - $x->scale); } return [$a, $b]; } private function valueWithMinScale(int $scale) : string { $value = $this->value; if ($this->value !== '0' && $scale > $this->scale) { $value .= \str_repeat('0', $scale - $this->scale); } return $value; } /** * Adds leading zeros if necessary to the unscaled value to represent the full decimal number. */ private function getUnscaledValueWithLeadingZeros() : string { $value = $this->value; $targetLength = $this->scale + 1; $negative = ($value[0] === '-'); $length = \strlen($value); if ($negative) { $length--; } if ($length >= $targetLength) { return $this->value; } if ($negative) { $value = \substr($value, 1); } $value = \str_pad($value, $targetLength, '0', STR_PAD_LEFT); if ($negative) { $value = '-' . $value; } return $value; } } PK 3��Z����<